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1. Introduction

The quark (baryon) number susceptibility of hot QCD matter characterizes the “softness”

of the equation of state. It is directly related to the event-by-event fluctuations observed

in heavy ion collision experiments [1], probing the phase diagram and the properties of the

hot QCD plasma. Thus, it is of significant interest to calculate it theoretically as accurately

as possible. Hence, several calculations of susceptibility have been published using lattice

simulations [2 – 8] or perturbation theory [9 – 11].

In this work we use lattice Monte Carlo simulations in order to measure the diagonal

(flavor singlet) and off-diagonal (non-singlet) quark number susceptibilities at high temper-

atures and at non-zero densities. Instead of full 4-dimensional QCD, the theory we study

on the lattice is a dimensionally reduced effective theory of the hot quark-gluon plasma

phase of QCD, electrostatic QCD (EQCD) [12 – 16]. It is by now well established that

EQCD can accurately describe many properties of the hot QCD plasma, and it provides

a very convenient starting point for studying high-temperature QCD using perturbative

analysis [17 – 19] or non-perturbative lattice simulations.

The validity of the effective theory approach is based on the fact that at high enough

temperatures the gauge coupling constant g becomes small, giving rise to three relevant

momentum scales (neglecting quark masses): hard scale p ∼ πT , corresponding to non-zero

Matsubara frequencies, soft electric scale ∼ gT and supersoft magnetic scale ∼ g2T . EQCD

is obtained by (formally) integrating over the hard scales perturbatively, leaving an effective
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theory for soft and supersoft scales. All infrared divergences inherent in finite temperature

field theories are correctly contained in the effective theory. A crucial feature of EQCD is

that all of the fermionic modes are integrated over, leaving a purely bosonic theory.

EQCD offers an interesting alternative to standard high-temperature lattice simula-

tions. Above all, the theory is three-dimensional and purely bosonic, making it much

cheaper to simulate. The standard QCD lattice simulations work well at temperatures up

to 5-10 Tc, but due to the sheer cost of the simulations with light quarks it can be very diffi-

cult to obtain accurate results. In contrast the perturbative analysis works at temperatures

T >∼ 10Tc (albeit with slow convergence), but since the infrared singularities in the magnetic

sector cannot be treated perturbatively the accuracy is limited to some order (depending

on the observable) in the coupling constant expansion. The lattice simulations of EQCD

fully include the effects of the infrared singularities, thus offering a clear way to improve

on the perturbative results. While EQCD cannot describe the QCD phase transition, it

has been observed to be quantitatively accurate down to temperatures of order 2-4 Tc,

depending on the quantity of interest. On the other hand, it is relatively easy to do EQCD

simulations at arbitrarily high temperatures, enabling one to quantify the convergence to

the perturbation theory and the role of the infrared singularities. Lattice simulations of

EQCD have been used to calculate QCD pressure at high temperature [20, 21], spatial

string tension [22], and spatial screening lengths [23 – 25].

In this paper we present the lattice calculations using EQCD to measure the diago-

nal and off-diagonal quark number (baryon number) susceptibilities at zero and non-zero

baryon chemical potential. At non-zero chemical potential EQCD suffers from a sign prob-

lem, albeit this is milder than in full QCD. The finite chemical potential results are obtained

by performing simulations with imaginary values of the chemical potential and then an-

alytically continuing to real chemical potential. We observe that the deviations from the

perturbation theory are significant up to temperatures of order 20Tc. On the other hand,

EQCD is observed to work at surprisingly low temperatures: our results agree well with

existing 4d lattice simulations even slightly below 2Tc. The method also is well suited for

simulations at non-zero chemical potential, because our observations agree those of [5] and

extend to even higher values of chemical potential. The results have been partly published

in [26, 27].

The paper is organised as follows. In section 2 we give the theoretical background and

specify the considered observables. In section 3 we present the numerical results of lattice

Monte Carlo Simulations. Conclusions are given in section 4.

2. Effective theory

2.1 Action

The electrostatic QCD with finite chemical potential µ is defined by the action

SE =

∫

d3xLE

LE =
1

2
Tr[F 2

ij ] + Tr[Di, A0]
2 + m2

3Tr[A2
0] + iγ3Tr[A3

0] + λ3(Tr[A2
0])

2, (2.1)
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where Fij = ∂iAj−∂jAi+ig3[Ai, Aj ] and Di = ∂i+ig3Ai. Fij , Ai and A0 are traceless 3×3

Hermitean matrices (A0 = Aa
0Ta, etc). The theory has 4 parameters: g2

3 (3-dimensional

gauge coupling), m2
3, λ3 and γ3, with dimensions [g2

3 ] = [λ3] = GeV, [γ3] = GeV3/2 and

[m2
3] = GeV2. Non-zero value of the parameter γ3, caused by non-zero quark chemical

potential, renders the action complex. Thus, this theory is not free from the sign problem

of finite density QCD.

It is convenient to define three dimensionless ratios

y =
m2

3

g4
3

, x =
λ3

g2
3

, z =
γ3

g3
3

, (2.2)

leaving only g2
3 dimensionful. Through the dimensional reduction process (perturbative

matching of suitable observables in EQCD and real QCD), the parameters of EQCD become

functions of physical 4d parameters: the temperature T and the chemical potential µ (the

quark masses are set to zero). The parameters are also functions of the renormalization

scale ΛMS used in the derivation of the effective theory. If we denote the number of quark

flavors by Nf , for Nc = 3 the relations are [16, 24]:

g2
3 =

24π2

33 − 2Nf

T

Λg/ΛMS

(

1 −
Nf
∑

i=1

1

9 − Nf

D(µ̄i)x + O(x2)

)

(2.3)

x =
9 − Nf

33 − 2Nf

1

Λx/ΛMS

(

1 −
Nf
∑

i=1

1

9 − Nf

D(µ̄i)x + O(x2)

)

(2.4)

y =
(9 − Nf)(6 + Nf)

144π2x

(

1 +

Nf
∑

i=1

3

6 + Nf

µ̄2
i

)

+

486 − 33Nf − 11N2
f − 2N3

f

96π2(9 − Nf)

(

1 +

Nf
∑

i=1

3(7 + Nf)(9 − 2Nf)

486 − 33Nf − 11N2
f − 2N3

f

µ̄2
i

)

+ O(x) (2.5)

z =

Nf
∑

i=1

µ̄i

3π

(

1 +
21 + 3Nf

18 − 2Nf

x

)

+ O(x2), (2.6)

where µ̄ = µ/(πT ), and, for small µ̄, D(µ̄) ≈ −7ζ(3)µ̄2/2, and

Λg = 4πT exp

(−3 + 4Nf log 4

66 − 4Nf

− γE

)

, (2.7)

Λx = 4πT exp

(−162 + 102Nf − 4N2
f + (36Nf − 4N2

f ) log(4)

594 − 75Nf + N2
f

− γE

)

. (2.8)

The dimensional reduction scheme is expected to be valid temperatures down to ∼2-4Tc

and chemical potential up to µ ∼ πT or µ̄ ∼ 1. For Nf = 2 these values correspond to

x ∼ 0.1 and z ∼ 0.1. At higher temperatures x becomes rapidly smaller. Hence, the higher

order corrections in x in above formulas become in practice very small, and we ignore

corrections O(x) in above expressions. We shall further restrict ourselves to 2 massless
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quarks, Nf = 2:

g2
3 = g2

3 |µ=0

x = x|µ=0

y = y|µ=0

(

1 +
3

8

Nf
∑

i=1

µ̄2
i

)

≡ y0

(

1 +
3

8

Nf
∑

i=1

µ̄2
i

)

z =

Nf
∑

i=1

µ̄i

3π
.

(2.9)

See [24] for more discussion about the effect of this approximation.

2.2 Susceptibility

We define the quark number susceptibility in EQCD as:

χ3,ij =
1

V

∂2

∂µ̄i∂µ̄j
lnZ =

1

V

∂2

∂µ̄i∂µ̄j
ln

∫

DAkDA0 exp (−SE) , (2.10)

where i, j stands for quark flavors u and d, and label 3 indicates that this is a result

from 3-dimensional effective theory. Thus, there are two independent components of the

susceptibility: diagonal (i = j) and off-diagonal (i 6= j). Using the shorthand notation for

the dimensionless volume averages

Ân
0 ≡ 1

gn
3 V

∫

d3x TrAn
0 (x), (2.11)

and defining the condensates

C1 =
〈

Â2
0

〉

C2 = V g6
3

(

〈

(Â3
0)

2
〉

−
〈

Â3
0

〉2
)

C3 = V g6
3

(

〈

(Â2
0)

2
〉

−
〈

Â2
0

〉2
)

(2.12)

C4 = V g6
3

(

〈

Â3
0Â

2
0

〉

−
〈

Â3
0

〉〈

Â2
0

〉

)

,

we can write the susceptibility as

χ3,ij

g6
3

= −3

4
δij y0 C1 −

1

9π2
C2 +

9

16
µ̄iµ̄j y2

0 C3 + i
1

4π
(µ̄i + µ̄j) y0 C4 (2.13)

We note here the rather striking fact that the expectation value in C4 is purely imaginary

for real µ̄, rendering the full expression real. The imaginary expectation value comes from

the complex measure; Â3
0 and Â2

0 itself are always real-valued.

2.3 Analytic continuation

The sign problem of finite density QCD is manifested here as an imaginary term in the

EQCD action, eq. (2.1). This makes the standard Monte Carlo importance sampling
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impractical, except for very small chemical potentials and/or small volumes. One option

to circumvent this problem is to use analytic continuation to complex values of µ̄: the sign

problem vanishes for purely imaginary µ̄.

However, we emphasize that the direct analytic continuation in µ̄ is clearly suboptimal

and unnecessary in this case: of the terms appearing in EQCD action eq. (2.1), only

iγ3Tr[A3
0] is responsible for the sign problem. Thus, it is sufficient to analytically continue

γ3 (or z) to imaginary values and leave the other parameters to the values determined by

the desired value of µ̄. By far the dominant effect of non-zero µ̄ is due to the µ̄-dependence

of the parameter y in eq. (2.9), we can take into account almost all of the effects of the

chemical potential by just using the correct y(µ̄). The remaining small corrections are then

taken into account by analytic continuation z → iz.1

Because the action (2.1) is invariant under the simultaneous change z → −z and

A0 → −A0, the partition function must be an even function of z (and µ). From this

follows that the expectation values
〈

Ân
0

〉

are even (odd) functions of z for even (odd) n.

Therefore, we can Taylor expand the condensates Ci appearing in the expression for the

susceptibility (2.13) in powers of z as appropriate:

Ci(z) =
∑

n

ci,nzn =
∑

n

inci,n(−iz)n. (2.14)

The analytic continuation now proceeds as follows: we perform simulations with imaginary

value of z and determine the Taylor series coefficients ci,n for each of the condensates up

to the desired order. Using eq. (2.14) we obtain the the condensates Ci at real values of z,

which can be inserted in eq. (2.13) in order to obtain the susceptibility.

The dependence of the condensates on z is very mild, as expected, and it turns out to

be sufficient to expand the condensates to very low order:

C1 = a1 + a2z
2 C3 = a4

C2 = a3 C4 =
∂C1

∂(iz)
= −2ia2z. (2.15)

Note that we assume that C2 and C3 are independent of z. This is indeed the case to the

statistical accuracy we can reach.

If we now denote with Ci(zI) the condensates measured from simulations with imagi-

nary z = (0, zI), the susceptibility at real z = (zR, 0) becomes

χ3,ij(zR)

g6
3

= − 3

4
δij y0

(

C1(zI) +
z2
R

zI

C4(zI)

)

− 1

9π2
C2(zI)

+
9

16
µ̄iµ̄j y2

0 C3(zI) +
1

4π
(µ̄i + µ̄j) y0

zR

zI

C4(zI) .

(2.16)

We note here that one simulation at some zI is sufficient to obtain the condensates and

the susceptibility at all (small enough) zR. However, because both y and z depend on µ̄,

1In [26] the susceptibility was evaluated by ignoring this correction; the improved statistics here make

the small correction non-negligible.
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only the value of zR which corresponds to µ̄ used in evaluating y is physical. Thus, for

each value of the chemical potential we need to do a new simulation. We also choose to

use zI = zR in our simulations, eliminating the ratios zI/zR in eq. (2.16). In what follows

we shall use the notation z = zR = zI to refer to both quantities.

The phase diagram of EQCD has 3 distinct phases: a symmetric phase with
〈

Â3
0

〉

= 0

and 2 broken phases with non-zero
〈

Â3
0

〉

, related by reflection
〈

Â3
0

〉

↔ −
〈

Â3
0

〉

[28]. In order

to properly represent 4d QCD, the effective theory must remain in the symmetric phase.

In the absence of the chemical potential the symmetric phase is at most metastable, when

the parameters x and y are fixed to values which correspond to 4d QCD. This is normally

not a problem, because the metastability is very strong and for all practical purposes the

symmetric phase remains stable.

Applying imaginary chemical potential to the full action would decrease the value of the

parameter y(µ), eq. (2.9). Hence, the metastability would be reduced and finally completely

lost at some value of imaginary µ. However, for our method of analytic continuation this

problem is completely avoided: because we calculate y(µ) with real µ, the value of y

increases as µ increases. Thus, the physical symmetric phase remains stable at all values

of µ.

2.4 Relation to 4D physics

The relation between χ3,ij and the physical 4d susceptibility is given by

χij

T 2
=

g6
3

π2T 3
χ3,ij +

∂2

∂µi∂µj
∆p, (2.17)

where ∆p = pQCD − pEQCD is the perturbative 3d↔4d matching coefficient for pressure.

This is perturbatively computable order-by-order in coupling constant expansion, because

all perturbatively problematic infrared singularities of high temperature QCD are fully

contained in EQCD. The matching coefficient is currently known to order O(g5) [17].2

The simulation results in section 3 indicate that the O(g6) and higher order contri-

butions to the matching coefficient are very small; indeed, if we compare our results with

the 4d simulation results, we obtain an excellent fit when we assume that these contribu-

tions vanish. Thus, the O(g6) and above contributions to the susceptibility are strongly

dominated by the contributions coming from EQCD.

Because EQCD is derived using perturbation theory, the final results depend on the

perturbative scale ΛMS. We shall use here the value ΛMS = 245 MeV, which has been

obtained from lattice simulations with 2 light Wilson quarks [30]. For the critical temper-

ature we use Tc = 170 MeV, yielding the ratio Tc/ΛMS = 0.7.3 The comparison between

EQCD and 4d QCD simulation results is somewhat sensitive to the precise value of this

ratio, but it can vary ±10% without significantly affecting the quality of the match. The

value 0.7 turns out to be close to the optimal one for the matching.

2For the pressure the matching coefficient has been calculated to O(g6) in a much simpler theory in

ref. [29].
3We obtain the same value by using the results r0Tc = 0.438 [31] and r0ΛMS

= 0.62 [30].
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Due to the perturbative nature of the matching equations it turns out to be convenient

to do the matching by subtracting the known 3d perturbative susceptibility and adding

the 4d one:
χ

T 2
=

g6
3

π2T 3

(

χlatt
3 − χpert

3

)

+
χpert

T 2
. (2.18)

Here χpert
3 and χpert are 3d and 4d perturbative results. We also note that the quantities

χuu = χdd and χud = χdu are related to those used in [5] by

χq = 2(χuu + χud) (2.19)

χI =
1

2
(χuu − χud) (2.20)

χC =
5

9
χuu − 4

9
χud. (2.21)

2.5 On the lattice

The theory in eq. (2.1) is discretized in a standard way, as described in [16]. Due to the

superrenormalizability of the 3d theory the couplings λ3 and g2
3 do not run, and m2

3 has

well-known linear and logarithmic divergences as the lattice spacing a → 0. When these

divergences are subtracted the continuum limit is straightforward.

The evaluation of the quark number susceptibility requires the measurement of the

condensates in eq. (2.13) on the lattice. Due to the superrenormalizable nature of the

theory, measurements can be rigorously converted to MS scheme in the lattice continuum

limit; because MS was used in in the perturbative matching to 4d QCD, this also allows

us to compare to 4d results.

The relations between the condensates on the lattice and in continuum can be written

in the limit the lattice spacing a → 0 (or β ≡ 6/(g2
3a) → ∞) as [16, 32]

C1,MS = C1,a − c̃1β − c̃2

(

ln β + c̃2
′
)

+ O(1/β),

C2,MS = C2,a −
[

c̄2

(

ln β + c̄′2
)]

+ O(1/β),

C3,MS = C3,a + O(1/β),

C4,MS = C4,a + O(1/β).

(2.22)

Here labels MS and a indicate that the quantity is calculated in MS or lattice regularization,

respectively. The numerical coefficients are

c̃1 ≈ 0.1684873399,

c̃2 =
3dA

(4π)2
≈ 0.1519817755,

c̃′2 ≈ 0.66796(1),

c̄2 =
5

16π2
≈ 0.0316628698900405,

c̄′2 ≈ 0.08848010.

(2.23)
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T/Tc y0(T ) x(T )

1.32 0.357 0.13

2.31 0.448 0.10

11.5 0.711 0.06

204 1.18 0.035

3600 2.02 0.020

2.4 × 107 3.09 0.013

6.2 × 109 3.99 0.010

1.9 × 1013 5.31 0.0075

6.1 × 1016 6.62 0.006

Table 1: The temperatures and corresponding y0, x-values used in the simulations. For

each temperature quark chemical potential has 6 values, parametrized by z ≡ 2µq/(3π2T ) =

0, 0.025, 0.05, 0.075, 0.1, 0.15, and for non-zero z y is modified according to eq. (2.9). At each (T, µ)-

pair the simulations are done using 6 different lattice spacings, parametrized by β ≡ 6/(g2
3a) =

32, 40, 54, 67, 80, 120.

3. Lattice simulations

The lattice simulations were carried out using two massless quark flavors (Nf = 2). We

used nine different values of temperature T , varying from T ≈ 1.9ΛMS up to ∼ 9×1016ΛMS.

The temperature values are shown in table 1. While the largest temperature is huge in

physical units, in 3d parameters the variation is much milder; this is related to the fact

that QCD approaches weakly coupled theory at high T extremely slowly. Thus, an extreme

range of high temperatures is required in order to reliably assess the convergence to the

perturbation theory.

At each temperature we use 6 values for z = (µu + µd)/(3π
2T ), µu = µd, up to

z = 0.15 or µu/T ≈ 2.22. This amounts to 54 different (T, µ) pairs. For each physical point

simulations are done using 6 lattice spacings, parametrized by β = 6/(g2
3a) = 32 . . . 120.

Thus, the lattice spacings vary by almost a factor of 4, enabling reliable extrapolation of

the continuum limit. For the smallest lattice spacing (β = 120), the largest lattice size

varies between 2563 to 3203.

In addition to the simulations at physical parameter values, we also did a several series

of runs at fixed x, y and varying z. While these simulations do not correspond to any

physical parameter set, they enable us to look at the z-dependence of the condensates

separately. All in all, our dataset contains 693 individual runs.

3.1 Continuum extrapolation

It turns out that the accuracy requirement are so high that the continuum limit extrap-

olation of the condensates have to be taken with great care. Especially the continuum

extrapolation of
〈

Â2
0

〉

is critical, because it strongly dominates the susceptibility. While

we know the divergent (as a → 0) and constant contributions appearing in the continuum

limit, eq. (2.22), O(a), O(a ln a) and higher order terms are not yet known. Thus, we use

– 8 –
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an ansatz
〈

Â2
0

〉

a
− C.T. = c1 +

c2

β
+

c′2
β

log(β) +
c3

β2
, (3.1)

where C.T. indicate the known counterterms in eq. (2.22) and ci are fit parameters. The

existence of the logarithmic term in the ansatz increases the errors of the extrapolation

an order of magnitude compared to the case without the logarithmic term. However, c′2
is expected to be a constant independent of y: by dimensional grounds the expansion of
〈

Â2
0

〉

in powers of the lattice spacing can be written as

〈

Â2
0

〉

a
=

D1

a
+ D2g

2
3 + a

[

D3 g4
3 + D4 m2

3 + D5 g2
3λ + D6 λ2

]

+ O(a2). (3.2)

The form of the O(a) coefficients D4, D5 and D6 is known and they do not contain a term

logarithmic in a [16, 32], whereas the coefficient D3, which is constant in y (or m2
3), might

include one. Thus, the possible a ln a -contribution should indeed be independent of y.

The existence of the logarithmic term can be seen in figure 1, where we show the

parameter c′2 obtained from continuum fits using the ansatz (3.1). Note that here c′2 is fitted

independently for each physical parameter set, allowing arbitrary y (and z) dependence.

As expected, the result is fairly well consistent with constant c′2 ≈ 0.69; the remaining

systematic discrepancies in the fit can be caused by contributions which are of higher order

than O(a2), including terms of type a2 ln a. Thus, we shall fix c′2 to this value in eq. (3.1)

for all continuum limit extrapolations which follow.

We note that the value of c′2 has negligible effect on the results at small (physically

relevant) temperatures; c′2 could be set to zero without affecting the continuum limit. It is

significant only at very large T , where it potentially has a role when we compare simulations

with the perturbation theory. We observe deviations from perturbative results even at very

high T if c′2 <∼ 0.4 (see also [26]). However, variations of order ∼ 15% around 0.69 do not

affect the final results.

Nevertheless, it is clear that an analytic calculation of O(a) effects in EQCD would be

highly desirable. There is an ongoing calculation using stochastic perturbation theory [33],

which will hopefully confirm our results.

The contributions of the other condensates are numerically much smaller and we were

not able to see any sign of logarithmic a-dependence in those. It turns out that it is

advantageous to make the continuum extrapolation using the full expression of the sus-

ceptibility (2.16), instead of extrapolating individual condensates. (Naturally, after the

subtraction of the known counterterms in eq. (2.22).) This extrapolation is shown in fig-

ure 2.

The lattice volumes are chosen large enough so that finite volume effects become negli-

gible. We have tested this by doing simulations at selected parameter values using different

volumes; at the smallest lattice spacing (β = 120) the volume varies from V = 1443 up to

V = 3203. No systematic finite volume effects inside two sigma errors. For more discussion

of finite size effects on a related model see ref. [21].

The finite chemical potential dependence is studied using the method described in

section 2.3. The condensates C2 = V g6
3(
〈

(Â3
0)

2
〉

−
〈

Â3
0

〉2
) and C3 = V g6

3(
〈

(Â2
0)

2
〉

−
〈

Â2
0

〉2
)
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Figure 1: Fitting of the logarithmic coefficient c′2 in continuum extrapolation. The data is consis-

tent with the assumption that c′2 is a constant χ2/d.o.f ≈ 57/35
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Figure 2: Continuum extrapolation of the diagonal susceptibility χ3,uu at chemical potential z = 0

and z = 0.1. The statistical errors are too small to be visible.

should be largely independent of z (for fixed x, y) for the equation (2.15) to be valid. This

indeed turns out to be the case, within the statistical errors, and any remnant z-dependence

is completely drowned out by the contributions from z-independent parts in eq. (2.15).

Indeed, the overall z-dependence of each of the condensates in eq. (2.15) turns out to be

statistically almost invisible, with the exception of C4 = V g2
3(
〈

Â2
0Â

3
0

〉

−
〈

Â2
0

〉〈

Â3
0

〉

), which

has a linear z-dependence. In practice the µ-dependence of the susceptibility is almost
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completely due to the µ-dependence of the parameter y and the µ2C3-term eq. (2.16)4.

Nevertheless, here we do take into account the small z-dependence of C1 =
〈

Â2
0

〉

and C4,

although it will affect the final results by only about 1 sigma.

3.2 Diagonal susceptibility

Now we are in position to compare the continuum limit results with the perturbation

theory. First we shall look at the diagonal susceptibility χ3,uu = χ3,dd. The susceptibility

has been calculated in perturbation theory up to order g6 ln 1/g [9]. In 3-dimensional units

the perturbative result can be written as a power series in 1/
√

y0, with the following result:

χpert
3,uu

g6
3

=
8 + 9µ̄2

4
√

4 + 3µ̄2

3y
3/2
0

4π

− (9 − 30x)µ̄2 − 4(3 + 10x) + 6(4 + 3µ̄2) ln(4 + 3µ̄2) + 6(4 + 3µ̄2) ln(y0)

2(4 + 3µ̄2)

3y0

(4π)2

− (8 + 3µ̄2)(89 + 4π2 − 44 ln(2))

8(4 + 3µ̄2)3/2

9y
1/2
0

(4π)3

+
{

576[−3438 + 40(2 + µ̄2)µ̄2] + 119313π2 + 640(4 + 3µ̄2)2 ln(4 + 3µ̄2)

+ 640(4 + 3µ̄2)2 ln(y0)
} 1

144(4 + 3µ̄2)2(4π)4
+

80

3(4π)4
βM2 + O(y

−1/2
0 ). (3.3)

We have set here µ̄u = µ̄d = µ̄. As can be observed in figure 3 the overall agreement

between the lattice result and the perturbation theory is very good, especially at large y

(large temperature). The result contains an unknown µ̄-independent order O(y0
0) -term

denoted by βM2 in [18]. The same term appears also in the off-diagonal susceptibility,

eq. (3.5), and it turns out that it gives much tighter constraints for the value of βM2 than

the diagonal one. The fit to the off-diagonal susceptibility gives βM2 = −0.1 ± 0.3. This

value is small enough that its effect is negligible for the diagonal susceptibility, nonetheless

we set here βM2 = −0.1.

In order to quantify the contributions not included in the perturbative result we cal-

culate the difference χlatt
3 − χpert

3 and fit a function of form b1/y
−1/2
0 + b2/y0 to the result.

The fit results are shown in figure 4 and table 2. We note that for small z the 1/y
1/2
0

-term is much smaller than the 1/y0-term, indicating that the O(g7) -contribution arising

from EQCD is smaller in magnitude to the O(g8) term, at least for all physically rele-

vant temperatures. At large z the statistical errors grow rapidly; this is due to the term

∝ z2V g6
3(
〈

(Â2
0)

2
〉

−
〈

Â2
0

〉2
) in eq. (2.16).

Finally, we obtain the physical 4d result for the diagonal susceptibility from eq. (2.18).

As described in section 2.4, the 3d↔4d mapping remains sensitive to the unknown O(g6)

and higher order perturbative contributions to the matching coefficient. In figure 5 we show

the EQCD data at µ̄ = 0 with these unknown contributions set to zero. We observe that

the result fits the 4d lattice simulations very well, clearly indicating that the magnitude

of these contributions must be small, and in what follows we shall set them to zero. On

4This fact was used in the preliminary results published in ref. [27]
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Figure 3: Left: the diagonal quark number susceptibility χ3,uu/g6
3 at different values of chemical

potential. The symbols indicate the lattice measurements, and the solid lines are the perturbative

result. Right: The difference between the lattice and perturbation theory.

z fit χ2/dof

0 0.0008(8)/
√

y0 − 0.0137(8)/y0 12/6

0.025 0.0016(8)/
√

y0 − 0.0143(7)/y0 18/6

0.05 0.000(1)/
√

y0 − 0.012(2)/y0 11/6

0.075 −0.003(2)/
√

y0 − 0.007(2)/y0 17/6

0.1 −0.008(4)/
√

y0 − 0.002(3)/y0 7.5/6

0.15 −0.012(6)/
√

y0 + 0.004(5)/y0 9.7/6

Table 2: Fitting a function of form b1/
√

y0 + b2/y0 to (χlat
3,uu − χpert

3,uu)/g6
3. The smallest y (lowest

temperature) points are left out of the fit.

the other hand, it should be noted that the difference between the purely perturbative

result and EQCD simulation result is substantial at T <∼ 10Tc, as indicated by the two lines

in figure 5. This is a clear indication that the contributions beyond the currently known

perturbative ones have non-negligible effect at experimentally accessible temperatures.

The µ-dependence of the diagonal susceptibility is shown in figure 6, normalized to the

Stefan-Boltzmann value

χSB(µ) = T 2 +
3

π2
µ2. (3.4)

We note that at temperatures above 100Tc the deviation from the Stefan-Boltzmann law

is independent of µ, but at lower T there is significant µ-dependence. The µ-dependence

matches very well the 4d lattice results by Allton et al. [5], also shown in figure 6.

– 12 –



J
H
E
P
0
4
(
2
0
0
8
)
0
7
8

0 0.4 0.8 1.2 1.6
y

-1/2
0

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0 0.4 0.8 1.2 1.6
y

-1/2
0

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0 0.4 0.8 1.2 1.6
y

-1/2
0

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0 0.4 0.8 1.2 1.6
y

-1/2
0

-0.03

-0.02

-0.01

0

0 0.4 0.8 1.2 1.6
y

-1/2
0

-0.03

-0.02

-0.01

0

0.01

0 0.4 0.8 1.2 1.6
y

-1/2
0

-0.04

-0.03

-0.02

-0.01

0

z = 0 z = 0.025 z = 0.05

z = 0.075 z = 0.1 z = 0.15

Figure 4: The diagonal susceptibility (χlat
3,uu − χpert

3,uu)
√

y/g6
3 as a function of 1/

√
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values of the chemical potential. Solid line is a 1st order polynomial fit. The data at y
−1/2

0 ≈ 1.6

have been excluded from the fit.

3.3 Off-diagonal susceptibility

The perturbative result for the off-diagonal susceptibility in 3d units is

χpert
3,ud

g2
3

=
9µ̄2

4
√

4 + 3µ̄2

y
3/2
0

4π

+
27µ̄2

4 + 3µ̄2

y0

(4π)2

+
27µ̄2(89 + 4π2 − 44 log(2))

8(4 + 3µ̄2)3/2

y
1/2
0

(4π)3

+
{

3(2047168 − 119313π2 + 15360µ̄2)µ̄2 + 2560(4 + 3µ̄2)2 ln(4 + 3µ̄2)+

2560(4 + 3µ̄2) ln(y0)
} 1

576(4 + 3µ̄2)2(4π)4
+

80

3(4π)4
βM2 + O(y

−1/2
0 ) (3.5)

where βM2 is the same unknown coefficient which appears in the diagonal susceptibility,

eq. (3.3). In this case we can fit the value at z = 0, obtaining

βM2 = −0.1 ± 0.3. (3.6)
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the perturbative result alone, eq. (3.3), using the same matching as in the EQCD result. The

difference between these two curves indicates the magnitude of the non-perturbative contributions.

The agreement with the 4d-lattice results of Gavai et al. [2] and Karsch et al. [4] is good.
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Figure 6: Left: The diagonal susceptibility at different µ, normalized to Stefan-Boltzmann law.

Right: µ-dependence of the susceptibility compared with the 4d lattice results of Allton et al. [5].

This value is small enough to have in practice negligible effect on the final results. Again

the simulation data is very well described by the perturbation theory, figure 7; only at

z = 0 or at lowest temperatures can we observe deviations from perturbation theory.

After matching to 4d, we obtain the result for off-diagonal susceptibility χud, shown

in figure 8. At T >∼ 10Tc the results match the perturbation theory very well, but at

– 14 –



J
H
E
P
0
4
(
2
0
0
8
)
0
7
8

0 1 2 3 4 5 6 7
y

0

0

0.2

0.4

0.6

0.8
χ 3,

ud
1 10 1000 10

6
10

9
10

12
10

15

T/Λ
MS
__

z = 0
z = 0.025
z = 0.05
z = 0.075
z = 0.1
z = 0.15

0 1 2 3 4 5 6 7
y

0

-0.004

-0.003

-0.002

-0.001

0

0.001

χ 3,
ud

 -
 χ

3,
ud

,p

1 10 1000 10
6

10
9

10
12

10
15

T/Λ
MS
__

z = 0
z = 0.025

Figure 7: Left: the off-diagonal susceptibility χ3,ud/g6
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lattice and perturbative susceptibilities (χlatt
3,ud − χpert

3,ud)/g6
3 , shown at 2 smallest µ̄. The statistical

errors grow rapidly as µ̄ increases.

lower temperatures there are deviations: most significantly, at T = 1.32Tc and µ = 0 the

simulation results clearly undershoot the perturbation theory. On the other hand, the 4d

lattice results in [5] at µ = 0 indicate small but non-zero value, which agrees well with

perturbation theory. [9, 10]. This can be an indication that this point is already outside

the validity range of EQCD; however, we also note that by increasing Tc/ΛMS the EQCD

results are brought closer to 4d lattice results [5]. The agreement with the perturbation

theory and 4d lattice results is rather good already at T = 2.3Tc.

We also note that the physical value of the off-diagonal susceptibility is obtained in

EQCD by a subtraction of two divergent as a → 0 terms; thus, as opposed to full 4d QCD

simulation, there is no natural approximate symmetry which would force it to be small.

Therefore, if EQCD starts to approach the limits of the validity, one can expect substantial

deviations from physical results, as seen at T = 1.32Tc.

Nevertheless, the overall µ-dependence of χud is in rough accordance with the 4d lattice

results [5] already at T = 1.32Tc, as shown on the right panel in figure 8, and at T = 2.3Tc

the agreement is already very good. The non-diagonal susceptibility is seen to behave quite

well up to large values of µ/T ∼ 2.

4. Conclusions

We have measured the quark number susceptibility of high temperature finite density QCD

using lattice simulations of EQCD, an effective 3-dimensional theory of full 4d QCD. The

very good match to the 4d lattice results with 2 light quark flavors at low temperatures and

with the perturbation theory at high temperatures shows the wide range of applicability

of the method. The diagonal susceptibility is seen to agree with 4d simulations by Allton
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Figure 8: Left: The off-diagonal susceptibility in 4d. At low temperatures we obtain significantly

different values from the perturbation theory (solid lines), but there is no deviation anymore at

T = 10Tc. Right: µ-dependence of off-diagonal susceptibility compared with Allton et al. [5]. The

precision of results from [5] are probably not accurate enough to predict the behaviour at region

µ/T > 1.

et al. [5] even below 2Tc, including the dependence on µ. On the other hand, we observe

a substantial deviation from the known perturbative result up to temperatures ∼ 20Tc.

The off-diagonal susceptibility is compatible with perturbation theory already at T >∼ 10Tc.

The results also agree with the 4d simulations [5] except perhaps at lowest temperatures,

T < 2Tc.

The results clearly indicate that EQCD is a viable method to obtain quantitatively

significant results of the hot QCD plasma down to T ∼ 2Tc. Equally significant is the

observation that the currently known perturbative result alone deviates significantly from

the correct result: while the perturbative result can be made to match the 4d lattice data by

adjusting the still unknown (high perturbative order) matching coefficients, EQCD allows

us to directly measure the differences between simulations and perturbative calculations

without any scale or matching ambiguities. Thus, simulations of EQCD are exceptionally

well suited for observing the convergence of the perturbation theory. It is worth noting

that while the EQCD susceptibility also suffers from matching ambiguity, we obtain an

excellent fit to 4d simulations by assuming these matching coefficients vanish, indicating

that the contribution from these is necessarily very small.
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